Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
mBio ; 13(4): e0137622, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1973797

ABSTRACT

The continuous emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) urges better understanding of the functional motifs in the spike (S) protein and their tolerance to mutations. Here, we focused on the S2' motif, which, during virus entry, requires cleavage by a host cell protease to release the fusion peptide. Though belonging to an immunogenic region, the SARS-CoV-2 S2' motif (811-KPSKR-815) has shown hardly any variation, with its three basic (K/R) residues being >99.99% conserved thus far. By creating a series of mutant pseudoviruses bearing the spikes of Wuhan-Hu-1, its G614 mutant or the Delta and Omicron variants, we show that residue K814 (preceding the scissile R815) is dispensable for TMPRSS2 yet favored by the alternative TMPRSS13 protease. Activation by TMPRSS13 was drastically reduced when the SARS-CoV-2 S2' motif was swapped with that of the low pathogenic 229E coronavirus (685-RVAGR-689), and also, the reverse effect was seen. This swap had no impact on recognition by TMPRSS2. In the Middle East respiratory syndrome coronavirus (MERS-CoV) spike, introducing a dibasic scissile motif was easily accepted by TMPRSS13 but less so by TMPRSS2, confirming that TMPRSS13 favors a sequence rich in K/R residues. Pseudovirus entry experiments in Calu-3 cells confirmed that the S2' mutations have minor impact on TMPRSS2. Our findings are the first to demonstrate which S2' residues are important for SARS-CoV-2 spike activation by these two airway proteases, with TMPRSS2 being more tolerant to variation than TMPRSS13. This preemptive insight will help to estimate the impact of S2' motif changes as they appear in new SARS-CoV-2 variants. IMPORTANCE Since its introduction in humans, SARS-CoV-2 is evolving with frequent appearance of new variants. The surveillance would benefit from proactive characterization of the functional motifs in the spike (S) protein, the most variable viral factor. This is linked to immune evasion but also influences spike functioning. Remarkably, though located in a strongly immunogenic region, the S2' cleavage motif has, thus far, remained highly conserved. This suggests that its sequence is critical for spike activation by airway proteases. To investigate this, we assessed how pseudovirus entry is affected by changes in the S2' motif. We demonstrate that TMPRSS2 readily accepts variations in this motif, whereas the alternative TMPRSS13 protease is more fastidious. The Wuhan-Hu-1, G614, Delta and Omicron spikes showed no difference in this regard. Being the first in its kind, our study will help to assess the impact of S2' variations as soon as they are detected during variant surveillance.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Membrane Proteins/genetics , Mutation , Peptide Hydrolases/genetics , SARS-CoV-2/genetics , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
2.
Microorganisms ; 9(5)2021 Apr 27.
Article in English | MEDLINE | ID: covidwho-1244074

ABSTRACT

Favipiravir (T-705) is a broad-spectrum antiviral drug that inhibits RNA viruses after intracellular conversion into its active form, T-705 ribofuranosyl 5'-triphosphate. We previously showed that T-705 is able to significantly inhibit the replication of chikungunya virus (CHIKV), an arbovirus transmitted by Aedes mosquitoes, in mammalian cells and in mouse models. In contrast, the effect of T-705 on CHIKV infection and replication in the mosquito vector is unknown. Since the antiviral activity of T-705 has been shown to be cell line-dependent, we studied here its antiviral efficacy in Aedes-derived mosquito cells and in Aedes aegypti mosquitoes. Interestingly, T-705 was devoid of anti-CHIKV activity in mosquito cells, despite being effective against CHIKV in Vero cells. By investigating the metabolic activation profile, we showed that, unlike Vero cells, mosquito cells were not able to convert T-705 into its active form. To explore whether alternative metabolization pathways might exist in vivo, Aedes aegypti mosquitoes were infected with CHIKV and administered T-705 via an artificial blood meal. Virus titrations of whole mosquitoes showed that T-705 was not able to reduce CHIKV infection in mosquitoes. Combined, these in vitro and in vivo data indicate that T-705 lacks antiviral activity in mosquitoes due to inadequate metabolic activation in this animal species.

3.
PLoS Pathog ; 17(4): e1009500, 2021 04.
Article in English | MEDLINE | ID: covidwho-1197396

ABSTRACT

The high transmissibility of SARS-CoV-2 is related to abundant replication in the upper airways, which is not observed for the other highly pathogenic coronaviruses SARS-CoV and MERS-CoV. We here reveal features of the coronavirus spike (S) protein, which optimize the virus towards the human respiratory tract. First, the S proteins exhibit an intrinsic temperature preference, corresponding with the temperature of the upper or lower airways. Pseudoviruses bearing the SARS-CoV-2 spike (SARS-2-S) were more infectious when produced at 33°C instead of 37°C, a property shared with the S protein of HCoV-229E, a common cold coronavirus. In contrast, the S proteins of SARS-CoV and MERS-CoV favored 37°C, in accordance with virus preference for the lower airways. Next, SARS-2-S-driven entry was efficiently activated by not only TMPRSS2, but also the TMPRSS13 protease, thus broadening the cell tropism of SARS-CoV-2. Both proteases proved relevant in the context of authentic virus replication. TMPRSS13 appeared an effective spike activator for the virulent coronaviruses but not the low pathogenic HCoV-229E virus. Activation of SARS-2-S by these surface proteases requires processing of the S1/S2 cleavage loop, in which both the furin recognition motif and extended loop length proved critical. Conversely, entry of loop deletion mutants is significantly increased in cathepsin-rich cells. Finally, we demonstrate that the D614G mutation increases SARS-CoV-2 stability, particularly at 37°C, and, enhances its use of the cathepsin L pathway. This indicates a link between S protein stability and usage of this alternative route for virus entry. Since these spike properties may promote virus spread, they potentially explain why the spike-G614 variant has replaced the early D614 variant to become globally predominant. Collectively, our findings reveal adaptive mechanisms whereby the coronavirus spike protein is adjusted to match the temperature and protease conditions of the airways, to enhance virus transmission and pathology.


Subject(s)
COVID-19/metabolism , Respiratory System/metabolism , Respiratory System/virology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/transmission , Coronavirus 229E, Human/metabolism , Furin/metabolism , Humans , Membrane Proteins/metabolism , Middle East Respiratory Syndrome Coronavirus/metabolism , Peptide Hydrolases/metabolism , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/genetics , Temperature , Virus Internalization , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL